Radon, Cosine and Sine Transforms on Grassmannian Manifolds

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radon, Cosine and Sine Transforms on Grassmannian Manifolds

LetGn,r(K) be the Grassmannian manifold of k-dimensionalK-subspaces in K where K = R,C,H is the field of real, complex or quaternionic numbers. We consider the Radon, cosine and sine transforms, Rr′,r, Cr′,r and Sr′,r, from the L space L2(Gn,r(K)) to the space L 2(Gn,r′(K)), for r, r ′ ≤ n − 1. The L spaces are decomposed into irreducible representations of G with multiplicity free. We compute ...

متن کامل

Fractional Cosine and Sine Transforms

The fractional cosine and sine transforms – closely related to the fractional Fourier transform, which is now actively used in optics and signal processing – are introduced and their main properties and possible applications are discussed.

متن کامل

The discrete fractional cosine and sine transforms

This paper is concerned with the definitions of the discrete fractional cosine transform (DFRCT) and the discrete fractional sine transform (DFRST). The definitions of DFRCT and DFRST are based on the eigen decomposition of DCT and DST kernels. This is the same idea as that of the discrete fractional Fourier transform (DFRFT); the eigenvalue and eigenvector relationships between the DFRCT, DFRS...

متن کامل

Fractional cosine, sine, and Hartley transforms

In previous papers, the Fourier transform (FT) has been generalized into the fractional Fourier transform (FRFT), the linear canonical transform (LCT), and the simplified fractional Fourier transform (SFRFT). Because the cosine, sine, and Hartley transforms are very similar to the FT, it is reasonable to think they can also be generalized by the similar way. In this paper, we will introduce sev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2009

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnn170